Assimilation of the Rain Gauge Measurements Using Particle Filter
نویسندگان
چکیده
منابع مشابه
Merging particle filter for sequential data assimilation
A new filtering technique for sequential data assimilation, the merging particle filter (MPF), is proposed. The MPF is devised to avoid the degeneration problem, which is inevitable in the particle filter (PF), without prohibitive computational cost. In addition, it is applicable to cases in which a nonlinear relationship exists between a state and observed data where the application of the ens...
متن کاملAssimilation of MODIS Snow Cover Area Data in a Distributed Hydrological Model Using the Particle Filter
Snow is an important component of the water cycle, and its estimation in hydrological models is of great significance concerning the simulation and forecasting of flood events due to snow-melt. The assimilation of Snow Cover Area (SCA) in physical distributed hydrological models is a possible source of improvement of snowmelt-related floods. In this study, the assimilation in the LISFLOOD model...
متن کاملUncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
[1] Two elementary issues in contemporary Earth system science and engineering are (1) the specification of model parameter values which characterize a system and (2) the estimation of state variables which express the system dynamic. This paper explores a novel sequential hydrologic data assimilation approach for estimating model parameters and state variables using particle filters (PFs). PFs...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
A Hybrid Particle-Ensemble Kalman Filter for Lagrangian Data Assimilation
Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean’s state (velocity field, salinity field, etc). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely-used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Earth and Space Science
سال: 2020
ISSN: 2333-5084,2333-5084
DOI: 10.1029/2020ea001212